Pointwise Approximation by Algebraic Polynomials

R. DAHLHAUS¹

Fachbereich Matematik, Universität Essen, D-4300 Essen 1, West Germany

Communicated by V. Totik

Received July 1, 1986

In 1951, A.F. Timan [9] proved that the approximation of smooth functions by algebraic polynomials can by improved near the end points of the approximation interval. He proved that for all $f \in C^r[-1, 1]$, $r \in \mathbb{N}_0$ there exists a polynomial of degree not greater than n, $p_n \in \Pi_n$ such that for all $x \in [-1, 1]$

$$|f(x) - p_n(x)| \leq C \, \varDelta_n(x)^r \omega_1(f^{(r)}, \, \varDelta_n(x)), \tag{1}$$

where $\Delta_n(x) = \sqrt{1 - x^2/n} + 1/n^2$, and $\omega_1(f^{(r)}, \cdot)$ is the modulus of continuity of the *r*th derivative of *f*. Subsequently, Brudnyi [1] extended the result by replacing $\omega_1(f^{(r)}, \Delta_n(x))$ by the *s*th modulus of continuity $\omega_s(f^{(r)}, \Delta_n(x))$ ($s \in \mathbb{N}$) while Gopengauz [5] proved the estimation simultaneously for all derivatives of *f*; i.e., we have

$$|f^{(k)}(x) - p_n^{(k)}(x)| \le C \, \Delta_n(x)^{r-k} \omega_s(f^{(r)}, \, \Delta_n(x)) \tag{2}$$

for $0 \leq k \leq r$.

In 1963, at the Oberwolfach conference on approximation theory, G. G. Lorentz [11] raised the question of whether $\Delta_n(x)$ in (1) can be replaced by $\Gamma_n(x) = \sqrt{1 - x^2/n}$. This question was answered positively in 1966 by Telyakowskii [8]. Subsequently, attempts were made to obtain the same generalization of this result as in (2). Gopengauz [4] obtained (2) with $\Gamma_n(x)$ instead of $\Delta_n(x)$ for s = 1, De Vore [2] proved the result for s = 2and r = 0, and Hinnemann and Gonska [6] proved the case s = 2, $r \ge 0$ and k = 0.

In 1985, considerable progress was made in papers by Gonska and Hinnemann [3] and Yu [10]. Gonska and Hinnemann proved by two independent proofs the cases $s \le r+2$, k=0 and $s \le r$, $0 \le k \le r-s$, while Yu was the first to show by a counterexample that (2), with $\Delta_n(x)$ replaced by $\Gamma_n(x)$, in general does not hold. He gave a counterexample for the case

¹Current address: Institut für Angewandte Mathematik, Universität Heidelberg, D-6900 Heidelberg, West Germany.

s=r+3 (and therefore also for $s \ge r+3$). Combining both papers, for k=0 the conjecture therefore holds if and only if $s \le r+2$.

By extending the proof methods of Gonska and Hinnemann and Yu we prove in this paper that (2) holds, with $\Delta_n(x)$ replaced by $\Gamma_n(x)$, if and only if $0 \le k \le \min\{r-s+2, r\}$, which solves the problem completely.

THEOREM 1. Let $r, s \in \mathbb{N}_0$. There exists a constant $C_{r,s} \in \mathbb{R}$ such that for all $f \in C^r[-1, 1]$ and all $n \ge \max\{4(r+1), r+s\}$ there exists a $p_n \in \Pi_n$ with

$$|f^{(k)}(x) - p_n^{(k)}(x)| \le C_{r,s} \Gamma_n(x)^{r-k} \omega_s(f^{(r)}, \Gamma_n(x))$$
(3)

for all $k \in \mathbb{N}_0$ with $0 \leq k \leq \min\{r-s+2, r\}$ and all $x \in [-1, 1]$.

Proof. Since the case s=1 implies the case s=0 we assume $s \ge 1$. Theorems 4.2 and 5.4 of Gonska and Hinnemann [3] imply the existence of linear polynomial operators $Q_n = Q_n^{(r,s)}$: $C^r[-1, 1] \rightarrow \Pi_n$ with

$$(Q_n f)^{(k)}(\pm 1) = f^{(k)}(\pm 1) \quad \text{for all} \quad f \in C^r[-1, 1] \text{ and } 0 \le k \le r,$$
(4)
$$|f^{(k)}(x) - (Q_n f)^{(k)}(x)| \le A_{r,s} \Delta_n(x)^{r+s-k} \|f^{(r+s)}\|$$

for all
$$f \in C^{r+s}[-1, 1], |x| \le 1, \text{ and } 0 \le k \le r+s,$$
 (5)

and

$$|f^{(k)}(x) - (Q_n f)^{(k)}(x)| \leq A_{r,s} \Delta_n(x)^{r-k} \omega_s(f^{(r)}, \Delta_n(x))$$

for all $f \in C^{(r)}[-1, 1], |x| \leq 1, \text{ and } 0 \leq k \leq r.$ (6)

By using these relations we now prove the assertion. In case $\sqrt{1-x^2} \ge n^{-1}$, $\Delta_n(x) \le 2\Gamma_n(x)$ and (6) imply (3). Suppose now that x is fixed with 0 < x < 1 and $\sqrt{1-x^2} < n^{-1}$ (-1 < x < 0 is treated analogously). The result of Müller [7] implies that for $f \in C'[-1, 1]$ there exists a $F_x \in C'^{+s}[-1, 1]$ with

$$\|f^{(k)} - F_x^{(k)}\| \le c_{r,s} \Gamma_n(x)^{r-k} \omega_s(f^{(r)}, \Gamma_n(x))$$
(7)

and

$$\Gamma_{n}(x)^{s} \|F_{x}^{(r+s)}\| \leq c_{r,s}\omega_{s}(f^{(r)},\Gamma_{n}(x)).$$
(8)

Thus we obtain as an upper bound of $|f^{(k)}(x) - (Q_n f)^{(k)}(x)|$

$$|f^{(k)}(x) - F_x^{(k)}(x)| + |F_x^{(k)}(x) - (Q_n F_x)^{(k)}(x)| + |\{Q_n (F_x - f)\}^{(k)}(x)|.$$
(9)

By (7), the first term has the required upper bound. The second term is equal to (note that the following constants are not the same in each step)

$$\left| \int_{x}^{1} \int_{u_{1}}^{1} \cdots \int_{u_{r-k}}^{1} (F_{x} - Q_{n}F_{x})^{(r+1)} (u_{r-k+1}) du_{r-k+1} \cdots du_{1} \right|$$

$$\leq A_{r,s} (1-x)^{r-k+1} \Delta_{n} (x)^{s-1} \|F_{x}^{(r+s)}\| \qquad \text{by using (5).}$$

Since $\Delta_n(x) \leq 2n^{-2}$ this is less than

$$C_{r,s}\Gamma_n(x)^{r-k}\omega_s(f^{(r)},\Gamma_n(x))(n\sqrt{1-x^2})^{r-s-k+2}.$$

If $k \le r-s+2$, the last factor is bounded by one. To estimate the last term in (9) we consider

$$\int_{x}^{1} \int_{u_{1}}^{1} \cdots \int_{u_{r-k-1}}^{1} \{Q_{n}(F_{x}-f)\}^{(r)}(u_{r-k}) \, du_{r-k} \cdots du_{1}$$

$$= \sum_{\nu=0}^{r-k-1} (-1)^{r-k-1-\nu} \frac{(1-x)^{\nu}}{\nu!}$$

$$\times \{Q_{n}(F_{x}-f)\}^{(k+\nu)}(1) + (-1)^{r-k} \{Q_{n}(F_{x}-f)\}^{(k)}(x).$$
(11)

Equation (7) and $1 - x \leq \Gamma_n(x)$ imply that the first term of (11) is bounded by $C_{r,s}\Gamma_n(x)^{r-k}\omega_s(f^{(r)},\Gamma_n(x))$. By using (6) we get as an upper bound of (10)

$$C_{r,s}(1-x)^{r-k} \left[\omega_s(F_x^{(r)} - f^{(r)}, \mathcal{A}_n(x)) + \|F_x^{(r)} - f^{(r)}\| \right] \\ \leq C_{r,s} \Gamma_n(x)^{r-k} \|F_x^{(r)} - f^{(r)}\|$$

which with (7) gives the result.

THEOREM 2. Let $r, s \in \mathbb{N}_0$. For all $C \in \mathbb{R}$ and all $n \in \mathbb{N}$ there exists a $f \in C^r[-1, 1]$ such that for all $p_n \in \prod_n$ there exists a $x = x_k \in [-1, 1]$ with

$$|f^{(k)}(x) - p_n^{(k)}(x)| > C\Gamma_n(x)^{r-k}\omega_s(f^{(r)}, \Gamma_n(x))$$

for all $k \in \mathbb{N}_0$ with $r - s + 3 \leq k \leq r$.

Proof. We only give a sketch. We first assume s = r + 3 and define as in Yu [10]

$$f_{r,a}(x) = \begin{cases} (-1+a-x)^{2r+3}, & -1 \le x \le -1+a \\ 0, & -1+a < x \le 1 \end{cases}$$

with $a = \{4Cn^{2r+2}\}^{-1}$. The assertion now follows by arguments similar to those given in the proof of Theorems 1 and 2 of Yu [10]. If s > r+3 we obtain the result from above since $\omega_s(f^{(r)}, \cdot) \leq 2^{s-r-3}\omega_{r+3}(f^{(r)}, \cdot)$. If s < r+3 we consider the function

$$f(x) = \int_{-1}^{x} \int_{-1}^{u_{r-s+3}} \cdots \int_{-1}^{u_2} f_{s-3,a}(u_1) \, du_1 \cdots du_{r-s+3}$$

with $a = \{4Cn^{2s-4}\}^{-1}$ and obtain again from the special case s = r+3 the assertion.

276

Summarizing the results of both theorems we have the following situation. Given r, s we can find by Theorem 1 a constant $C_{r,s}$ such that (3) holds simultaneously for the first r-s+2 derivatives. For the same constant we can then find by Theorem 2 a function f such that (3) is wrong for all higher derivatives. Especially, we have the following corollary.

COROLLARY. Assertion (3) holds simultaneously for all r derivatives if and only if $s \leq 2$.

ACKNOWLEDGMENT

I am grateful to E. Hinnemann for bringing the problem to my attention.

References

- 1. JU A. BRUDNYI, Generalizations of a theorem of A. F. Timan, Soviet Math. Dokl. 4 (1963), 244-247.
- R. A. DE VORE, Pointwise approximation by polynomials and splines, in "Proc. Conf. on Approximation of Functions, Kalouga 1975" (S. B. Steckin and S. A. Telyakowskii, Ed.), pp. 132-141, Izdat. Nauka, Moskow 1977.
- 3. H. H. GONSKA AND E. HINNEMANN, Pointwise estimations of approximations by algebraic polynomials, Acta Math. Hungar. 46 (1985), 243-254. [German]
- 4. I. E. GOPENGAUZ, A theorem of A. F. Timan on the approximation of functions by polynomials on a finite segment. *Mat. Zametki* 1 (1967), 163–172. [Russian]
- I. E. GOPENGAUZ, A question concerning the approximation of functions on a segment and a region with corners, *Theor. Funkcii Funkcional. Anal. Pril.* 4 (1967), 204-210. [Russian]
- E. HINNEMANN AND H. H. GONSKA, Generalization of a theorem of De Vore, in "Approximation Theory IV" (C. K. Chui, L. L. Schumaker, and J. W. Ward, Eds.), pp. 527–532, Academic Press, New York, 1983.
- M. W. MÜLLER, An extension of the Freud-Popov lemma, in "Approximation Theory III" (E. W. Cheney, Ed.), pp. 661–665, Academic Press, New York, 1980.
- S. A. TELYAKOWSKII, Two theorems on approximation of functions by algebraic polynomials, in "American Mathematical Society Translations, Series 2," Vol. 77, pp. 163–177, Amer. Math. Soc., Providence, RI, 1966.
- A. F. TIMAN, A strenghening of Jackson's theorem on the best approximation of continuous functions on a finite segment of the real axis, *Dokl. Akad. Nauk SSSR* 78 (1951), 17-20. [Russian]
- 10. YU XIANG-MING, Pointwise estimate for algebraic polynomial approximation, Approx. Theory Appl. 1 (1985), 109-114.
- G. G. LORENTZ, An unsolved problem, in "On Approximation Theory" (P. L. Butzer and J. Korevaar, Eds.), p. 185, Birkhäuser Verlag, Basel, 1972.