Pointwise Approximation by Algebraic Polynomials

R. Dahlhaus ${ }^{1}$
Fachbereich Matematik, Universität Essen, D-4300 Essen I, West Germany
Communicated by V. Totik

Received July 1, 1986

In 1951, A.F. Timan [9] proved that the approximation of smooth functions by algebraic polynomials can by improved near the end points of the approximation interval. He proved that for all $f \in C^{r}[-1,1], r \in \mathbb{N}_{0}$ there exists a polynomial of degree not greater than $n, p_{n} \in \Pi_{n}$ such that for all $x \in[-1,1]$

$$
\begin{equation*}
\left|f(x)-p_{n}(x)\right| \leqslant C \Delta_{n}(x)^{r} \omega_{1}\left(f^{(r)}, \Delta_{n}(x)\right), \tag{1}
\end{equation*}
$$

where $\Delta_{n}(x)=\sqrt{1-x^{2}} / n+1 / n^{2}$, and $\omega_{1}\left(f^{(r)}, \cdot\right)$ is the modulus of continuity of the r th derivative of f. Subsequently, Brudnyi [1] extended the result by replacing $\omega_{1}\left(f^{(r)}, \Delta_{n}(x)\right)$ by the s th modulus of continuity $\omega_{s}\left(f^{(r)}, \Delta_{n}(x)\right) \quad(s \in \mathbb{N})$ while Gopengauz [5] proved the estimation simultaneously for all derivatives of f; i.e., we have

$$
\begin{equation*}
\left|f^{(k)}(x)-p_{n}^{(k)}(x)\right| \leqslant C \Delta_{n}(x)^{r-k} \omega_{s}\left(f^{(r)}, \Delta_{n}(x)\right) \tag{2}
\end{equation*}
$$

for $0 \leqslant k \leqslant r$.
In 1963, at the Oberwolfach conference on approximation theory, G. G. Lorentz [11] raised the question of whether $\Delta_{n}(x)$ in (1) can be replaced by $\Gamma_{n}(x)=\sqrt{1-x^{2}} / n$. This question was answered positively in 1966 by Telyakowskii [8]. Subsequently, attempts were made to obtain the same generalization of this result as in (2). Gopengauz [4] obtained (2) with $\Gamma_{n}(x)$ instead of $\Delta_{n}(x)$ for $s=1$, De Vore [2] proved the result for $s=2$ and $r=0$, and Hinnemann and Gonska [6] proved the case $s=2, r \geqslant 0$ and $k=0$.

In 1985, considerable progress was made in papers by Gonska and Hinnemann [3] and Yu [10]. Gonska and Hinnemann proved by two independent proofs the cases $s \leqslant r+2, k=0$ and $s \leqslant r, 0 \leqslant k \leqslant r-s$, while Yu was the first to show by a counterexample that (2), with $A_{n}(x)$ replaced by $\Gamma_{n}(x)$, in general does not hold. He gave a counterexample for the case

[^0]$s=r+3$ (and therefore also for $s \geqslant r+3$). Combining both papers, for $k=0$ the conjecture therefore holds if and only if $s \leqslant r+2$.
By extending the proof methods of Gonska and Hinnemann and Yu we prove in this paper that (2) holds, with $\Delta_{n}(x)$ replaced by $\Gamma_{n}(x)$, if and only if $0 \leqslant k \leqslant \min \{r-s+2, r\}$, which solves the problem completely.

Theorem 1. Let $r, s \in \mathbb{N}_{0}$. There exists a constant $C_{r, s} \in \mathbb{R}$ such that for all $f \in C^{r}[-1,1]$ and all $n \geqslant \max \{4(r+1), r+s\}$ there exists a $p_{n} \in \Pi_{n}$ with

$$
\begin{equation*}
\left|f^{(k)}(x)-p_{n}^{(k)}(x)\right| \leqslant C_{r, s} \Gamma_{n}(x)^{r-k} \omega_{s}\left(f^{(r)}, \Gamma_{n}(x)\right) \tag{3}
\end{equation*}
$$

for all $k \in \mathbb{N}_{0}$ with $0 \leqslant k \leqslant \min \{r-s+2, r\}$ and all $x \in[-1,1]$.
Proof. Since the case $s=1$ implies the case $s=0$ we assume $s \geqslant 1$. Theorems 4.2 and 5.4 of Gonska and Hinnemann [3] imply the existence of linear polynomial operators $Q_{n}=Q_{n}^{(r, s)}: C^{\prime}[-1,1] \rightarrow \Pi_{n}$ with

$$
\begin{align*}
& \left(Q_{n} f\right)^{(k)}(\pm 1)=f^{(k)}(\pm 1) \quad \text { for all } \quad f \in C^{r}[-1,1] \text { and } 0 \leqslant k \leqslant r, \tag{4}\\
& \left|f^{(k)}(x)-\left(Q_{n} f\right)^{(k)}(x)\right| \leqslant A_{r, s} \Delta_{n}(x)^{r+s-k}\left\|f^{(r+s)}\right\| \\
& \quad \text { for all } f \in C^{r+s}[-1,1],|x| \leqslant 1, \text { and } 0 \leqslant k \leqslant r+s, \tag{5}
\end{align*}
$$

and

$$
\begin{align*}
&\left|f^{(k)}(x)-\left(Q_{n} f\right)^{(k)}(x)\right| \leqslant A_{r, s} \Delta_{n}(x)^{r-k} \omega_{s}\left(f^{(r)}, \Delta_{n}(x)\right) \\
& \text { for all } f \in C^{(r)}[-1,1],|x| \leqslant 1, \text { and } 0 \leqslant k \leqslant r . \tag{6}
\end{align*}
$$

By using these relations we now prove the assertion. In case $\sqrt{1-x^{2}} \geqslant n^{-1}, \Delta_{n}(x) \leqslant 2 \Gamma_{n}(x)$ and (6) imply (3). Suppose now that x is fixed with $0<x<1$ and $\sqrt{1-x^{2}}<n^{-1} \quad(-1<x<0$ is treated analogously). The result of Müller [7] implies that for $f \in C^{\prime}[-1,1]$ there exists a $F_{x} \in C^{r+s}[-1,1]$ with

$$
\begin{equation*}
\left\|f^{(k)}-F_{x}^{(k)}\right\| \leqslant c_{r, s} \Gamma_{n}(x)^{r-k} \omega_{s}\left(f^{(r)}, \Gamma_{n}(x)\right) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma_{n}(x)^{s}\left\|F_{x}^{(r+s)}\right\| \leqslant c_{r, s} \omega_{s}\left(f^{(r)}, \Gamma_{n}(x)\right) . \tag{8}
\end{equation*}
$$

Thus we obtain as an upper bound of $\left|f^{(k)}(x)-\left(Q_{n} f\right)^{(k)}(x)\right|$

$$
\begin{equation*}
\left|f^{(k)}(x)-F_{x}^{(k)}(x)\right|+\left|F_{x}^{(k)}(x)-\left(Q_{n} F_{x}\right)^{(k)}(x)\right|+\left|\left\{Q_{n}\left(F_{x}-f\right)\right\}^{(k)}(x)\right| . \tag{9}
\end{equation*}
$$

By (7), the first term has the required upper bound. The second term is equal to (note that the following constants are not the same in each step)

$$
\begin{aligned}
& \left|\int_{x}^{1} \int_{u_{1}}^{1} \cdots \int_{u_{r-k}}^{1}\left(F_{x}-Q_{n} F_{x}\right)^{(r+1)}\left(u_{r-k+1}\right) d u_{r-k+1} \cdots d u_{1}\right| \\
& \quad \leqslant A_{r, s}(1-x)^{r-k+1} \Delta_{n}(x)^{s-1}\left\|F_{x}^{(r+s)}\right\| \quad \text { by using (5). }
\end{aligned}
$$

Since $\Delta_{n}(x) \leqslant 2 n^{-2}$ this is less than

$$
C_{r, s} \Gamma_{n}(x)^{r-k} \omega_{s}\left(f^{(r)}, \Gamma_{n}(x)\right)\left(n \sqrt{1-x^{2}}\right)^{r-s-k+2}
$$

If $k \leqslant r-s+2$, the last factor is bounded by one. To estimate the last term in (9) we consider

$$
\begin{align*}
\int_{x}^{1} \int_{u_{1}}^{1} & \cdots \int_{u_{r-k-1}}^{1}\left\{Q_{n}\left(F_{x}-f\right)\right\}^{(r)}\left(u_{r-k}\right) d u_{r-k} \cdots d u_{1} \tag{10}\\
= & \sum_{v=0}^{r-k-1}(-1)^{r-k-1-v} \frac{(1-x)^{v}}{v!} \\
& \times\left\{Q_{n}\left(F_{x}-f\right)\right\}^{(k+v)}(1)+(-1)^{r-k}\left\{Q_{n}\left(F_{x}-f\right)\right\}^{(k)}(x) \tag{11}
\end{align*}
$$

Equation (7) and $1-x \leqslant \Gamma_{n}(x)$ imply that the first term of (11) is bounded by $C_{r, s} \Gamma_{n}(x)^{r-k} \omega_{s}\left(f^{(r)}, \Gamma_{n}(x)\right)$. By using (6) we get as an upper bound of (10)

$$
\begin{aligned}
& C_{r, s}(1-x)^{r-k}\left[\omega_{s}\left(F_{x}^{(r)}-f^{(r)}, \Delta_{n}(x)\right)+\left\|F_{x}^{(r)}-f^{(r)}\right\|\right] \\
& \quad \leqslant C_{r, s} \Gamma_{n}(x)^{r-k}\left\|F_{x}^{(r)}-f^{(r)}\right\|
\end{aligned}
$$

which with (7) gives the result.
Theorem 2. Let $r, s \in \mathbb{N}_{0}$. For all $C \in \mathbb{R}$ and all $n \in \mathbb{N}$ there exists a $f \in C^{r}[-1,1]$ such that for all $p_{n} \in \prod_{n}$ there exists $a x=x_{k} \in[-1,1]$ with

$$
\left|f^{(k)}(x)-p_{n}^{(k)}(x)\right|>C \Gamma_{n}(x)^{r-k} \omega_{s}\left(f^{(r)}, \Gamma_{n}(x)\right)
$$

for all $k \in \mathbb{N}_{0}$ with $r-s+3 \leqslant k \leqslant r$.
Proof. We only give a sketch. We first assume $s=r+3$ and define as in Yu [10]

$$
f_{r, a}(x)= \begin{cases}(-1+a-x)^{2 r+3}, & -1 \leqslant x \leqslant-1+a \\ 0, & -1+a<x \leqslant 1\end{cases}
$$

with $a=\left\{4 C n^{2 r+2}\right\}^{-1}$. The assertion now follows by arguments similar to those given in the proof of Theorems 1 and 2 of Yu [10]. If $s>r+3$ we obtain the result from above since $\omega_{s}\left(f^{(r)}, \cdot\right) \leqslant 2^{s-r-3} \omega_{r+3}\left(f^{(r)}, \cdot\right)$. If $s<r+3$ we consider the function

$$
f(x)=\int_{-1}^{x} \int_{-1}^{u_{r-s+3}} \cdots \int_{-1}^{u_{2}} f_{s-3, a}\left(u_{1}\right) d u_{1} \cdots d u_{r-s+3}
$$

with $a=\left\{4 \mathrm{Cn}^{2 s-4}\right\}^{-1}$ and obtain again from the special case $s=r+3$ the assertion.

Summarizing the results of both theorems we have the following situation. Given r, s we can find by Theorem 1 a constant $C_{r, s}$ such that (3) holds simultaneously for the first $r-s+2$ derivatives. For the same constant we can then find by Theorem 2 a function f such that (3) is wrong for all higher derivatives. Especially, we have the following corollary.

Corollary. Assertion (3) holds simultaneously for all r derivatives if and only if $s \leqslant 2$.

Acknowledgment

I am grateful to E . Hinnemann for bringing the problem to my attention.

References

1. Ju A. Brudnyı, Generalizations of a theorem of A. F. Timan, Soviet Math. Dokl. 4 (1963), 244-247.
2. R. A. De Vore, Pointwise approximation by polynomials and splines, in "Proc. Conf. on Approximation of Functions, Kalouga 1975" (S. B. Steckin and S. A. Telyakowskii, Ed.), pp. 132-141, Izdat. Nauka, Moskow 1977.
3. H. H. Gonska and E. Hinnemann, Pointwise estimations of approximations by algebraic polynomials, Acta Math. Hungar. 46 (1985), 243-254. [German]
4. I. E. Gopengauz, A theorem of A. F. Timan on the approximation of functions by polynomials on a finite segment. Mat. Zametki 1 (1967), 163-172. [Russian]
5. I. E. Gopengauz, A question concerning the approximation of functions on a segment and a region with corners, Theor. Funkcii Funkcional. Anal. Pril. 4 (1967), 204-210. [Russian]
6. E. Hinnemann and H. H. Gonska, Generalization of a theorem of De Vore, in "Approximation Theory IV" (C. K. Chui, L. L. Schumaker, and J. W. Ward, Eds.), pp. 527-532, Academic Press, New York, 1983.
7. M. W. Müller, An extension of the Freud-Popov lemma, in "Approximation Theory III" (E. W. Cheney, Ed.), pp. 661-665, Academic Press, New York, 1980.
8. S. A. Telyakowski, Two theorems on approximation of functions by algebraic polynomials, in "American Mathematical Society Translations, Series 2," Vol. 77, pp. 163-177, Amer. Math. Soc., Providence, RI, 1966.
9. A. F. Timan, A strenghening of Jackson's theorem on the best approximation of continuous functions on a finite segment of the real axis, Dokl. Akad. Nauk SSSR 78 (1951), 17-20. [Russian]
10. Yu Xiang-ming, Pointwise estimate for algebraic polynomial approximation, Approx. Theory Appl. 1 (1985), 109-114.
11. G. G. Lorentz, An unsolved problem, in "On Approximation Theory" (P. L. Butzer and J. Korevaar, Eds.), p. 185, Birkhäuser Verlag, Basel, 1972.

[^0]: ${ }^{1}$ Current address: Institut für Angewandte Mathematik, Universität Heidelberg, D-6900 Heidelberg, West Germany.

